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Abstract
The maximum and minimum principal strains of an InAs quantum wire (QWR) buried in a
GaAs matrix are computed using the boundary element method (BEM), the inclusion method,
and molecular statics, and the results from each method are compared with each other. The first
two methods are based on continuum mechanics and linear elasticity, while the third is
atomistic. The maximum principal strains are largely in agreement among the different
methods, especially outside the QWR, though in the centre of the QWR, the discrepancy
between the continuum and atomistic methods can be as large as 11.9%. The gradients of the
strain tensor are in agreement among the methods. The inclusion method is faster than the
BEM, and both continuum methods are an order of magnitude faster than molecular statics.
Although the inclusion method, unlike the BEM, ignores the difference in material properties
between the QWR and its surrounding matrix, its results are in better agreement with the
molecular statics results than the results from the BEM. The rough quantitative and qualitative
agreements indicate the utility of classical continuum methods for estimating strain profiles in
nanoscale structures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Although quantum dots (QDs) and quantum wires (QWRs)
are small enough for their dimensions to be on the order of
the de Broglie wavelength of an electron [1], they can still
be large enough to be expensive to model with completely
atomistic methods, such as molecular dynamics or molecular
statics. Atomistic models typically require millions of
particles [2, 3]. The length scale of QD interactions suggests
the characteristic length of elastic fields is significantly larger
than interatomic spacings, as also evidenced in studies of
strains in coherent nanostructures [4]. Therefore, atomistic
resolution throughout the entire model is often unnecessary
when computing strains, and continuum-based methods offer a
relatively computationally inexpensive means to compute such
quantities. However, the small dimensions of QDs and QWRs
mean that the validity of continuum models of QWRs cannot
be taken for granted.

In this paper, the maximum and minimum principal strains
of an infinitely long QWR are determined using molecular
statics with the Tersoff potential, described in section 2, and
also by two different continuum methods: a boundary element
method (BEM) described in [5], and an inclusion method
described in [6] and [7]. The QWR is shown in cross-section
in figure 1. The square QWR is InAs, and the matrix in which
it is embedded is GaAs. The QWR is assumed to be in a
plane strain state. The Miller index of the xz-plane is (010),
where the y-coordinate points into the plane of the page. The
origin of the coordinate system is in the centre of the unit cell.
The lattice constant of GaAs is given as a = 0.565 33 nm
[8]. Such a QWR has been analysed with continuum methods
before [6], but not with atomistic methods. An older study
in 1998 [9] compared continuum and atomistic approaches
as applied to a QD, using the Keating potential [10, 11]
for its atomistic calculations and low-order finite difference
methods to determine numerical results from its continuum
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Figure 1. Cross-section of a square QWR embedded in an infinite
matrix, where a = 0.565 33 nm is the lattice constant of GaAs.

models. The Keating potential, though, was formulated for
small displacements [10], and when Kikuchi et al [12] applied
it to QDs, they found that it could produce unphysical wavy
stress profiles in the substrate beneath the QD.

2. Molecular statics

In molecular statics, the positions of the atoms in the
simulation are adjusted in order to minimize the potential
energy V . Here, the functional form of the energy is taken
to be the empirical Tersoff potential [13, 14],

V = 1
2

M∑

i=1

M∑

i �= j

fc(ri j )[Ai j exp(−λi jri j)

− bi j Bi j exp(−μi jri j)], (1)

where M is the number of atoms in the simulation and ri j is
the distance between atoms i and j . Other terms in (1) are as
follows.

fc(ri j) =
⎧
⎪⎨

⎪⎩

1 ri j � Ri j − Di j

1
2

{
1− sin

[
π(ri j−Ri j )/2Di j

]} |ri j−Ri j |�Di j

0 ri j � Ri j + Di j

, (2)

bi j = [
1 + (βi jζi j)

ni j
]−1/2ni j

, (3)

ζi j =
M∑

i �= j �=k

fc(rik)g(θ j ik) exp[γ 3
i j(ri j − rik)

3], (4)

g(θ j ik) = 1 +
(

ci j

di j

)2

− c2
i j

d2
i j + (hi j − cos θ j ik)2

, (5)

where fc is the cutoff function, θ j ik is the angle between the
line segment from atom i to atom j and the line segment
from atom i to atom k, and the parameters Ai j , Bi j , etc are
shown in tables 1 and 2. Units for each parameter are shown
unless the parameter is dimensionless. These parameters were
determined by Migliorato et al [3], who reused parameters
from [15–17], but refitted the parameters for In–As bonds in
order to better reproduce the cohesive energy of InAs. They

Table 1. Tersoff parameters for Ga–Ga, In–In, and As–As bonds.

Parameter Ga–Ga In–In As–As

Aij (eV) 993.888 2975.54 1571.86
Bij (eV) 136.123 360.61 546.432
λi j 2.508 427 47 2.6159 2.38413
μi j 1.490 824 1.68117 1.728 73
ci j 0.076 297 73 0.084 215 5.273 1318
di j 19.796 474 19.2626 0.751 026 62
hi j 7.145 9174 7.392 28 0.152 923 54
βi j 0.235 862 37 2.108 71 0.007 488 09
ni j 3.472 9041 3.402 23 0.608 791 33
γi j (nm−1) 14.91 0.0 17.29
Rij (nm) 0.35 0.35 0.35
Dij (nm) 0.01 0.01 0.01

Table 2. Tersoff parameters for Ga–As, In–As, and Ga–In bonds.

Parameter Ga–As In–As Ga–In

Aij (eV) 2543.297 2291.292 969 1214.917
Bij (eV) 314.46 424.874 512 177.22
λi j 2.828 093 2.517 917 2.5621
μi j 1.723 012 1.678 611 1.586 00
ci j 1.226 302 0.9989 0.080 256
di j 0.790 396 0.826 08 195.2950
hi j −0.518 489 −0.5145 7.269 10
βi j 0.357 192 0.3779 0.705 24
ni j 6.317 410 7.141 472 3.437 39
γi j (nm−1) 17.23 15.0 0.0
Rij (nm) 0.35 0.37 0.35
Dij (nm) 0.01 0.01 0.01

fitted the parameters for InAs to its bulk modulus, (c11 +
2c12)/3 = 57.9 GPa, and its shear constant, (c11 − c12)/2 =
19.0 GPa. The empirical potential leads to a value for c44 =
41.7 MPa, which is slightly different from the experimental
value 39.59 MPa [8].

The boundary conditions in the molecular statics
simulations are periodic with a fixed volume. Since the QWR
is assumed to be infinitely long along the y-direction and its
strain state independent of y, the thickness of this unit cell
along this direction is taken to be 8a. Too small a value of
the thickness would lead to an unphysical dependence of the
strain on y. The size of the unit cell in its x and z dimensions
is chosen to be large enough so that periodic images do not
interact. A unit cell length and width in the xz-plane of
256a × 256a was found to be sufficient. The total number
of atoms used in this simulation is 4194 304. In the initial
configuration of the simulation, the lattice constant of the InAs
of the QWR is taken to be that of GaAs. Since the actual
lattice constant of InAs is about 7% larger than this [8], this
causes an initial compressive strain of about 7% in the wire.
The system was relaxed from this initial configuration using the
Polak–Ribière conjugate gradient algorithm as implemented in
the software LAMMPS [18].

It should be noted that one can exploit the periodic
boundary conditions to simulate an array of QWRs or QDs.
However, if the unit cells of this array are of fixed volume,
as is the case when applying the conjugate gradient algorithm
in LAMMPS [19], then the displacement of the matrix at the
boundary of the cell is fixed to zero, which is unphysical for
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Figure 2. Relative positions of the neighbours of atom i before and after the deformation gradient F is applied.

closely spaced arrays. Because of this, only a isolated QWR is
modelled in this work.

The strain is determined according to a least-squares
formulation from [20] and simplified in [21]. The simplified
formulation was also used in the atomistic visualization
software AtomEye [22, 23]. For a given atom i with N
neighbours within its cutoff radius, one can determine the
vectors Ri1, Ri2, . . . , Ri N , which are the differences between
the initial position vectors of the neighbours and the initial
position vector of atom i . After a deformation gradient F
is applied, these difference vectors become r i1, r i2, . . . , r i N ,
the differences between the position vectors of the neighbours
and the position vector of atom i after deformation. This is
illustrated schematically in figure 2 for N = 4. For this work,
the cutoff radius is the maximum value of Ri j + Di j , which is
0.38 nm, as can be seen from tables 1 and 2. This will generally
mean that the neighbours of the atom in each calculation of the
strain will be the nearest ones.

According to the Cauchy–Born approximation [24],

r i j − FRi j = 0 (6)

where j ∈ 1, 2, . . . , N . Here, the Cauchy–Born
approximation is not taken to be exact, but rather r i j − FRi j is
treated as a residual to be minimized. From [20], the function
to be minimized is

φ(F) =
N∑

j=1

|r i j − FRi j |2W ( j) (7)

where W ( j) is a weighting function. Following [21] and
[22], (7) is simplified by taking W ( j) to be unity. With this
simplification, the value of F that minimizes φ is

F = WV−1 (8)

where

W =
N∑

j=1

(r i j ⊗ Ri j) (9)

V =
N∑

j=1

(Ri j ⊗ Ri j) (10)

where ⊗ is the dyad product. From the deformation gradient
F, the gradient of the displacement ∇u can be determined as

∇u = F − I (11)

where I is the identity tensor. From this, the small strain
tensor [25] γ can be calculated as

γ = 1
2

[∇u + (∇u)T
]

(12)

where the superscript T indicates the transpose. The small
strain tensor is used here for the sake of consistency, since it
is used in the linear elastic continuum methods of section 3.

3. Continuum methods

Indicial notation is used in this section, and unless otherwise
stated, indices range from 1 to 3. The comma notation is used
to indicate differentiation with respect to a coordinate. The
values of the elastic constants of GaAs and InAs can be found
in [8].

Suppose that out of an infinite space of GaAs, an infinitely
long wire of GaAs with a square cross-section is cut out.
The cutout is then transformed into InAs. Since the lattice
constant of InAs is about 7% larger than that of GaAs, this
has the effect of inducing a strain γ ∗

i j where γ ∗
ii ≈ 7% (no

sum on i ) and all other components of the strain γ ∗
i j are

zero. No stress corresponds to this strain γ ∗
i j , which is called

the transformational strain or eigenstrain. To reinsert the
transformed cutout, a strain of −γ ∗

i j is imposed to shrink the
cutout to the original size it had before the transformation. This
strain does correspond to a stress, namely −C (w)

i jklγ
∗
kl , where

C (w)
i jkl is the elasticity tensor of the QWR, that is, the InAs

cutout. After reinsertion, the cutout is welded to the infinite
space, so there is no slip between the InAs and GaAs, and the
cutout is allowed to relax. The relaxation causes the InAs to
expand, inducing a strain γi j in the surrounding GaAs matrix.
A diagram of this result is shown in figure 3. The grid lines are
distorted to show the strain in the GaAs and InAs. The stress
in the matrix is C (m)

i jklγkl , where C (m)
i jkl is the elasticity tensor of

the GaAs, the material of the matrix surrounding the QWR.
The stress state from the initial strain, σ o

i j = −C (w)
i jklγ

∗
kl , is

then superposed onto the so-called ‘total’ stress in the wire to
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Figure 3. InAs cutout inserted back into space of GaAs. The grid
lines illustrate the distortion of the reinserted InAs and the
surrounding GaAs matrix.

account for the nonzero initial stress σ t
i j = C (w)

i jklγkl , so the real
stress in the wire is [5, 26]

σi j = σ t
i j + σ o

i j (13)

= C (w)
i jkl(γkl − γ ∗

kl). (14)

From here, both the boundary element and inclusion methods
can be derived.

The exact value of the eigenstrain is actually slightly
ambiguous. When the stress-free strain is applied to the cutout,
then

γ ∗
11 = ∂u1

∂x1
. (15)

Since the eigenstrain is constant, the above equation can be
integrated such that

u1 = γ ∗
11x1 (16)

where the integration constant is set to zero because the
displacement at the origin is taken to be zero. Let there be a
cutout whose dimensions were originally kaGaAs × kaGaAs but
are kaInAs × kaInAs after the stress-free strain is applied, where
aGaAs and aInAs are the lattice constants of GaAs and InAs,
respectively, and k is a positive integer. The lattice constant
of GaAs, as noted before is 0.565 33 nm, while the lattice
constant of InAs is 0.605 83 nm [8]. Let the displacement u1

be determined for a point on the right boundary of the cutout.
Then, u1 is k(aInAs−aGaAs). Since in a small strain formulation,
the distinction between the initial and deformed coordinates is
treated as irrelevant [25], the value of x1 on the right boundary
can be taken as either kaGaAs or kaInAs, and γ ∗

11 can be taken
to be either (aInAs − aGaAs)/aGaAs or (aInAs − aGaAs)/aInAs. A
similar argument applies for the other normal components of
the eigenstrain. Depending on which way the eigenstrain is
determined, one would have γ ∗

ii = 7.16% or γ ∗
ii = 6.69% (no

sum on i ). Paladugu et al [27] used the former value for the
eigenstrain, while Guo et al [28] used the latter.

3.1. Boundary element method

If there is an initial stress σ o
i j , then the Somigliana’s identity is

modified to become [29]

cul =
∫




Ulktk d
 −
∫




Tlk uk d
 −
∫

�

σ o
jkUlk, j d� (17)

where 
 is the boundary of the QWR. When dealing with
points inside the QWR, � is the space inside the QWR. When
dealing with points outside the QWR, � would be the space
outside the QWR, that is, the GaAs matrix, but in this space,
σ o

jk is zero. On the right-hand side of (17), uk and tk are the
displacement and traction along 
. On the left-hand side of
(17), ul is the displacement at some particular point. If this
point is a smooth boundary point, then c = 1/2, and if it is
within � but not on the boundary, then c = 1. Ulk and Tlk

are the Green’s functions of displacement and traction in the k-
direction due to a unit load in the l-direction. The last integral
is a domain integral, but since the eigenstrain γ ∗

i j is constant, it
can be transformed into a boundary integral as follows.
∫

�

σ o
jkUlk, j d� =

∫

�

(σ o
jkUlk), j d� =

∫




σ o
jkUlk n j d
 (18)

= −
∫




C jkmnγ
∗
mnUlk n j d
 (19)

where n j is the outward unit normal to the boundary 
.
Equation (17) can then be simplified to

cul =
∫




Ulk(tk + C jkmnγ
∗
mnn j ) d
 −

∫




Tlkuk d
. (20)

In [5], building from the work in [30], Ulk is expressed in the
Stroh formalism.

Ui j = 1

π
Im [A jm Dmn Ain] (21)

where Im (Z) is the imaginary part of the complex number Z ,
and

Dmn =
{

ln(zm − sm) m = n

0 m �= n
(22)

where
z j = x + p j z (23)

s j = X + p j Z . (24)

The ordered pairs (x, z) and (X, Z) are the coordinates of the
field and source points in the 1–3 plane (or xz-plane), p j is a
Stroh eigenvalue, and A jr is the jr th component of the matrix
of Stroh eigenvectors A = [a1 a2 a3]. p j and a j must satisfy
the eigenequation

[Q + p j(R + RT) + p2
j T]a j = 0 (25)

where

Qik = Ci1k1 Rik = C1ik3 Tik = Ci3k3. (26)

The superscript T indicates the transpose, and Ci jkl is the
elasticity tensor. There are six eigenvalues, but j ranges from 1
to 3, and p j+3 = p̄ j , where the overbar indicates the complex
conjugate. The first three eigenvalues are chosen such that

Im (p j) > 0 a j+3 = ā j b j+3 = b̄ j (27)

where

b j = (R+ p j T)a j = 1

p j
(Q+ p jR)a j (no sum on j). (28)

4
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The eigenvectors are normalized such that they satisfy the
relation

bT
i aj + aT

i b j = δi j (29)

where

δi j =
{

1 i = j

0 i �= j .
(30)

The traction Green’s function can be derived from the
displacement Green’s function [5]. Barring the presence of
eigenstrain, which is taken into account by the last term on
the right-hand side of (17), not by the Green’s functions
themselves, the elastic strain is

γ jk = 1
2 (u j,k + uk, j ). (31)

Similarly, then, the strain Green’s function is

γ i
jk = 1

2 (Ui j,k + Uik, j ). (32)

The traction is
t j = C jklmγlm nk (33)

where nk is the kth component of the outward normal.
Therefore, the traction Green’s function is

Ti j = C jklmγ i
lm nk = 1

2 C jklm nk(Uil,m + Uim,l). (34)

Substituting (21) into (34),

Ti j = C jklm nk

2π
Im

[
Aln Dnr,m Air + Amn Dnr,l Air

]
. (35)

Now

Dnr,m =
{

zn,m/(zn − sn) n = r

0 n �= r
(no sum on n)

(36)
since sn,m = 0, where the derivative is with respect to the point
(x, z). Furthermore,

zn,1 = ∂zn

∂x
= 1 (37)

zn,2 = ∂zn

∂y
= 0 (38)

zn,3 = ∂zn

∂z
= pn. (39)

From the above, the traction Green’s function Ti j can be readily
determined.

Approximating the boundary with M constant elements,
the discretization of (20) is then

cul =
M∑

i=1

(∫


i

U (m)

lk d
i

)
t (m)

ki −
M∑

i=1

(∫


i

T (m)

lk d
i

)
uki

(40)
for the GaAs matrix, and

cul =
M∑

i=1

(∫


i

U (w)
lk d
i

)
(t (w)

ki + C (w)
rkmnγ

∗
mnnr )

−
M∑

i=1

(∫


i

T (w)
lk d
i

)
uki (41)

for the InAs wire. Superscripts in parentheses are not indices
and are not summed. In (40) and (41), M is the number of
elements and also the number of nodes, 
i is the portion of the
boundary discretized by the i th element, uki is the component
of the displacement in the k-direction for the i th node, which is
at the shared boundary of the GaAs matrix and the InAs wire,
and t (m)

ki is the component of the traction at the boundary of the
GaAs matrix in the k-direction for the i th node. This traction is
with respect to the outer normal of the matrix boundary, which
points away from the GaAs matrix and toward the InAs wire.
Similarly, the term t (w)

ki is the component of the traction at the
boundary of the InAs wire in the k-direction for the i th node.
This traction is with respect to the outer normal of the wire
boundary, which points toward the GaAs matrix and away from
the InAs wire. Accordingly, t (m)

ki = −t (w)
ki . U (m)

lk and T (m)
lk

are the Green’s functions for the GaAs matrix. They have the
same form as (21), but with elastic stiffness C jkmn = C (m)

jkmn .

Similarly, U (w)

lk and T (w)

lk are the Green’s functions for the InAs
wire.

The above discretized integral equations can be rewritten
in matrix form. Let

[Û (m)

lk ] j i ≡
∫


i

U (m)

lk d
i

∣∣∣∣
j

(42)

[Û (w)

lk ] j i ≡
∫


i

U (w)

lk d
i

∣∣∣∣
j

(43)

[T̂ (m)
lk ] j i ≡

(∫


i

T (m)
lk d
i + 1

2δlkδ j i

)∣∣∣∣
j

(44)

[T̂ (w)
lk ] j i ≡

(∫


i

T (w)
lk d
i + 1

2δlkδ j i

)∣∣∣∣
j

(45)

[F̂l] j ≡
M∑

i=1

(∫


i

U (m)
lk d
i

)
C (w)

rkmnγ
∗
mnnr

∣∣∣∣∣
j

(46)

[uk]i ≡ uki (47)

[t (m)

k ]i ≡ t (m)

ki (48)

[t (w)
k ]i ≡ t (w)

ki . (49)

The notation f | j means to evaluate f at the j th node.
Rewriting (40) and (41) (for i = 1, 2, . . . , M),

M∑

i=1

[T̂ (m)
lk ] j i [uk]i −

M∑

i=1

[Û (m)

lk ] j i[t (m)
k ]i = 0 (50)

M∑

i=1

[T̂ (w)
lk ] j i [uk]i −

M∑

i=1

[Û (w)

lk ] j i[t (w)
k ]i = [F̂l ] j . (51)

Since t (m)
ki = −t (w)

ki , the above equations can be combined
into a single matrix equation, shown below, where both the
displacements and the tractions on the boundary of the wire
appear as unknowns.

[
T̂(m) Û(m)

T̂(w) −Û(w)

] [
u

t(w)

]
=

[
0
F

]
. (52)

5
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Here, [Û (m)

lk ] j i is the j i th 3 × 3 submatrix of the 3M × 3M
matrix Û(m), and similarly for T̂(m), Û(w), and T̂(w). Likewise,
[uk]i represents the i th 3×1 submatrix of the 3M ×1 matrix u,
[t (m)

k ]i and [t (w)
k ]i are the i th 3 × 1 submatrices of t(m) and t(w),

respectively, and [F̂ l] j is the j th 3 × 1 submatrix of F. The
matrix 0 is the 3M × 1 zero vector.

The integrals in (40) and (41) can be evaluated exactly [5].
In general, one can write
∫


s

Ui j d
s = 1

π
Im

[
A jm H 
s

mn Ain
]

(53)

∫


s

Ti j d
s = C jklm nk

2π
Im

[
Aln Ĥ 
s

nrm Air + Amn Ĥ 
s
nrl Air

]

(54)

where H 
i
mn ≡ ∫


i
Dmn d
i and Ĥ 
i

nrm ≡ ∫

i

Dnr,m d
i .

However, (54) is not used to evaluate the submatrices [T̂ (m)
lk ] j i

and [T̂ (w)

lk ] j i if they are along the diagonal of T̂(m) and T̂(w),
respectively. This will be discussed at the end of this section.
Now

H 
i
mn =

∫


i

Dmn d
i =
∫ τ2

τ1

Dmn
∂
i

∂τ
dτ (55)

Ĥ 
i
nrm =

∫


i

Dnr,m d
i =
∫ τ2

τ1

Dnr,m
∂
i

∂τ
dτ. (56)

Since constant elements are used, 
i is a line segment
connecting the endpoints of the i th constant element, which
are here denoted as (x i

1, zi
1) and (x i

2, zi
2). The line segment 
i

may be expressed as the set of coordinates (x i , zi ) that satisfy
the relations

x i = x i
1 + (x i

2 − x i
1)τ (57)

zi = zi
1 + (zi

2 − zi
1)τ (58)

where 0 � τ � 1. For these relations, τ1 and τ2 in (55) and
(56) equal zero and one, respectively, and ∂
i/∂τ = l, where
l is the length of the line segment 
i . Accordingly,

H 
i
mn =

∫ 1

0
Dmnl dτ =

{
hml m = n

0 m �= n
(59)

where

hm = x i
1 + pmzi

1 − sm

x i
2 − x i

1 + pm(zi
2 − zi

1)
ln

(
x i

2 + pmzi
2 − sm

x i
1 + pmzi

1 − sm

)

+ ln(x i
2 + pmzi

2 − sm) − 1 (no sum on i or m) (60)

and

Ĥ 
i
nrm =

∫ 1

0
Dnr,ml dτ =

{
ĥnml n = r

0 n �= r
(61)

where

ĥnm = zn,m

xi
2 − x i

1 + pn(zi
2 − zi

1)
ln

(
x i

2 + pnzi
2 − sn

x i
1 + pnzi

1 − sn

)

(no sum on n). (62)

The values of zn,m for m = 1, 2, 3 are shown in (37)–(39)
above.

Equation (54) is only used to evaluate
∫

i

Tlk d
i | j if
i �= j . Otherwise, the rigid body method [29] is used. For
the infinite domain of the GaAs matrix,

[T̂ (m)
lk ] j j = δlk −

M∑

i �= j

[T̂ (m)
lk ] j i . (63)

For the finite domain of the InAs wire,

[T̂ (w)
lk ] j j = −

M∑

i �= j

[T̂ (w)
lk ] j i . (64)

Once uki and t (w)
ki (which is −t (m)

ki ) are determined, (40)
can be used to find the displacement at an arbitrary point in the
GaAs matrix, and (41) can be used to find the displacement at
an arbitrary point in the InAs wire. Equation (40) or (41) may
be substituted into (31) to find the strain at an internal point,
and from the strain, the stress may be calculated.

The strains are determined for field points within the do-
main x ∈ (−128aGaAs, 128aGaAs), z ∈ (−128aGaAs, 128aGaAs)

on a 500 × 500 grid evenly spaced over the whole domain, ex-
cept for points deemed too close to the boundary of the QWR
for this BEM to yield accurate strain values. Here, points
within a distance δ, where δ is taken to be half the length of
each boundary element, were taken to be too close. The bound-
ary between the QWR and its surrounding matrix is discretized
into 640 elements.

3.2. Inclusion method

If the difference in material properties between the QWR and
its surrounding matrix is ignored, then the displacement at field
point X can be written as [31]

ul(X) = −
∫

�

σ o
jkUlk, j (X) d� (65)

where the domain � is taken to be all space. Since the
difference in material properties between the GaAs matrix and
the InAs QWR is neglected, the function Ulk, j is the same for
all space, and the elasticity tensor is denoted as Ci jkl . The
elastic properties of the QWR are taken to be those of the
matrix. The domain � can be divided into two subdomains,
�(m) and �(w), consisting of the points inside the matrix and
the wire, respectively. Since σ o

jk = −C jkmnγ
∗
mn , and γ ∗

mn is
only nonzero within �(w), (65) becomes

ul =
∫

�(w)

C jkmnγ
∗
mnUlk, j d� (66)

which can be rewritten as a boundary integral since C jkmnγ
∗
mn

is constant.

ul = C jkmnγ
∗
mn

∫

�(w)

Ulk, j d� = C jkmnγ
∗
mn

∫




Ulkn j d
 (67)

where 
 is the boundary of the QWR and n j is the outward
pointing normal of this boundary. If the boundary is a series
of straight line segments 
i , then (67) can be integrated

6
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Figure 4. Maximum principal strains as determined by (a) BEM (for γ ∗
ii = 7.16%, no sum on i), (b) inclusion method (also for γ ∗

ii = 7.16%,
no sum on i), and (c) molecular statics for atoms with initial y-coordinate equal to zero. x, z ∈ [−20 nm, 20 nm]. The y-axis points into the
plane of the page.

analytically, and the contribution to the displacement from each
line segment 
i is [6]

ul = n j C jkmnγ
∗
mn

π
Im [Akr H 
i

rs Als ] (68)

where Ai j is the i j th component of the matrix of Stroh
eigenvectors discussed in section 3.1, and H 
i

jk is the same as
in (59) from the same section. The total displacement is the
sum of the contributions to the displacement from each line
segment.

The above equation can be differentiated to obtain the
strain.

γβα = n j C jkmnγ
∗
mn

π
Im [Akr Ĥ 
i

rsα Aβs + Akr Ĥ 
i
rsβ Aαs] (69)

γ2α = n j C jkmnγ
∗
mn

π
Im [Akr Ĥ 
i

rsα A2s] (70)

where α, β = 1, 3 and Ĥ 
i
jkl is the same as in (61).

The strains were determined at the same field points used
for the BEM, described above.

4. Results

Numerical computations are carried out on a PC with
dual quad-core xeon 3.20 GHz processors and 4 GB of
RAM. The molecular statics calculations with LAMMPS took
approximately five days to complete. By contrast, on the
same PC, a Fortran program implementing the BEM took
about an hour to run its calculations, and a Fortran program
implementing the inclusion method less than a minute. The
molecular statics calculations ran in parallel using MPI and
used all eight processor cores, while the Fortran programs for
the continuum calculations ran in serial.

Figures 4 and 5 show colour (grayscale) maps of the
maximum and minimum principal strains calculated by BEM,
the inclusion method, and molecular statics. Noteworthy is

7
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Figure 5. Minimum principal strains as determined by (a) BEM (for γ ∗
ii = 7.16%, no sum on i), (b) inclusion method (also for γ ∗

ii = 7.16%,
no sum on i), and (c) molecular statics for atoms with y-coordinate equal to zero. x, z ∈ [−20 nm, 20 nm]. Again, the y-axis points into the
plane of the page.

Table 3. Maximum principal strains at the centre of the QWR. γ ∗
ii is

a normal component of the eigenstrain, with no sum on i .

Method Max. prin. strain

BEM, γ ∗
ii = 7.16% 0.056

BEM, γ ∗
ii = 6.69% 0.052

Inclusion, γ ∗
ii = 7.16% 0.061

Inclusion, γ ∗
ii = 6.69% 0.057

Molecular
statics (y = 0) 0.059

that the map of the maximum principal strain for the inclusion
method more closely resembles the maps for molecular statics
than the map for the BEM. The principal strain fields as
determined by molecular statics do not differ significantly as
the y-coordinate changes—which makes sense since the QWR
is under plane strain—so only the strains for the case where
y = 0 are shown.

Table 4. Minimum principal strains at x = z = ±20 nm. γ ∗
ii is a

normal component of the eigenstrain, with no sum on i .

Min. prin. strain,
Method x = ±20 rm

BEM, γ ∗
ii = 7.16% −0.0098

BEM, γ ∗
ii = 6.69% −0.0089

Inclusion, γ ∗
ii = 7.16% −0.0103

Inclusion, γ ∗
ii = 6.69% −0.0096

Molecular
statics (y = 0) −0.0113

Figures 6 and 7 show profile plots of the maximum
principal strain along the diagonal x = z as determined using
the BEM, inclusion method, and molecular statics. As can be
observed, all methods predict approximately the same shape
for the strain profile, and particularly outside the QWR, the

8
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Figure 6. Maximum principal strain for points along the diagonal line x = z, for x ∈ [−20 nm, 20 nm], using the BEM and molecular statics.
γ ∗

ii is a normal component of the eigenstrain, with no sum on i .
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Figure 7. Maximum principal strain for points along the diagonal line x = z, for x ∈ [−20 nm, 20 nm], using the inclusion method and
molecular statics. γ ∗

ii is a normal component of the eigenstrain, with no sum on i .

strain profiles are especially close to one another. Table 3 lists
the values for the maximum principal strain at the centre of
the QWR for these methods. The value from BEM differs
from the value from molecular statics by either 5.1% or 11.9%,
depending on how the eigenstrain is determined. (See section 3
on the ambiguity in determining eigenstrain.) Similarly, the
value from the inclusion method differs from molecular statics
by either −3.4% or 3.4%. Again, the results from the inclusion
method are closer than the BEM results are to the results from
molecular statics. Furthermore, the values from table 3 can
be used to show that the induced maximum principal strain

based on the continuum methods is linearly proportional to
the eigenstrain. For example, the ratio of the eigenstrain to
the maximum principal strain as determined from the BEM is
0.0716/0.056 ≈ 0.0669/0.052 ≈ 1.3. This is consistent with
the formulations presented in the previous section.

Similarly, figures 8 and 9 show profile plots of the
minimum principal strain along the x = z diagonal as
determined using the BEM, inclusion method, and molecular
statics. Again, the results from the inclusion method are closer
than the BEM results are to the results from molecular statics.
All three methods predict that the minimum principal strain

9
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ii is a normal component of the eigenstrain, with no sum on i .

inside the QWR is zero. However, outside the QWR, the strain
profiles show some disagreement. This is shown in table 4,
where the minimum principal strains are given for the arbitrary
points where x = z = ±20 nm.

Profiles of the gradients of the strain tensor, ε11,3, ε33,3,
and ε13,3, along the diagonal x = z are shown in figures 10–
12. To simplify the figures, only the results for molecular
statics for y = 0 and the continuum methods with γ ∗

ii =
7.16% (no sum on i ) are shown. These were determined
numerically using central difference formulae. Because of the
symmetry of the square QWR, these derivatives have the same

values as ε33,1, ε11,1, and ε31,1, respectively. For each of the
three approaches—molecular statics, BEM, and the inclusion
method—the values of ε11,3, ε33,3, and ε13,3 are largely in
agreement.

5. Discussion and conclusions

Although the inclusion method, unlike the BEM, ignores the
difference in material properties between the QWR and its
surrounding matrix, its results are in better agreement with
the molecular statics results than the results from the BEM.
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Figure 11. Strain derivative ε33,3 for points along the diagonal line x = z.

Faux et al [32] argued that since the elastic constants of
III–V semiconductors are largely dependent on their lattice
spacing [33], then the strain in the QWR induced by the
lattice mismatch causes its effective elastic constants to be
roughly those of its surrounding matrix. The results tentatively
indicate that this argument may have some merit, although
Ellaway and Faux [34] have pointed out that simply using the
elastic constants of the matrix for the QWR is still a crude
approximation at best. We remark that in future work, we
plan to study further the dependence of the elastic constants
on strain.

The maximum and minimum principal strains inside and
around a QWR were determined by the following methods:

• the boundary element method (see section 3.1) and the
inclusion method (see section 3.2), both of which are
grounded in continuum mechanics and linear elasticity;

• molecular statics (see section 2), an atomistic approach
suitable for the length scales of QWRs.

Based on the results from these methods, one can conclude
that if one needs to predict the strain fields within the
QWR to an accuracy of about 10%, then the continuum
methods are adequate. Continuum methods are also capable
of determining the qualitative trends in how strain fields
vary. Furthermore, both continuum methods are far more
computationally inexpensive than molecular statics.
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